Artificial Neural Networks, Adaptive and Classical Control for FTC of Linear Parameters Varying Systems
نویسندگان
چکیده
Three different schemes for Fault Tolerant Control (FTC) based on Adaptive Control in combination with Artificial Neural Networks (ANN), Robust Control and Linear Parameter Varying (LPV) systems are compared. These schemes include a Model Reference Adaptive Controller (MRAC), a MRAC with an ANN and a MRAC with an H∞ Loop Shaping Controller for 4 operating points of an LPV system (MRAC-4OP-LPV, MRAC-NN4OP-LPV and MRAC-H∞4OP-LPV, respectively). In order to compare the performance of these schemes, a coupled-tank system was used as testbed in which two different types of faults (abrupt and gradual) applied in sensor and actuators in different operating points were simulated. The simulation results showed that the use of ANN in combination with an adaptive controller for LPV-based system improves the FTC scheme, delivering a robust FTC system against abrupt and gradual sensor faults. For actuator faults, the only schemes that were fault tolerant were the MRAC-H∞4OP-LPV and the MRAC-4OP-LPV (i.e. the MRAC-H∞4OP-LPV was fault tolerant for actuator faults varying from 0 to 0.5 of magnitude).
منابع مشابه
Adaptive fuzzy pole placement for stabilization of non-linear systems
A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...
متن کاملبهبود عملکرد سامانههای کنترل از طریق شبکه با استفاده از چرخش در قوانین کنترلگر منطق فازی
This paper addresses a novel control method adapted with varying time delay to improve NCS performance. A well-known challenge with NCSs is the stochastic time delay. Conventional controllers such as PID type controllers which are just tuned with a constant time delay could not be a solution for these systems. Fuzzy logic controllers due to their nonlinear characteristic which is compatible wit...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملOn the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کامل